Properties

Label 6912.ln.4.g1
Order $ 2^{6} \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3\times A_4^2):C_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7)(5,6)(9,11)(10,13), (4,6)(5,7), (1,2,3)(10,11,13), (1,3)(4,7,6,5)(8,15,12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3:S_4\times \GL(2,\mathbb{Z}/4)$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3.(C_3\times A_4^2).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times (C_3\times A_4^2).C_3:S_3.C_2^3$
$W$$C_2\times A_4^2.D_6$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_3:S_4\times \GL(2,\mathbb{Z}/4)$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$(C_3\times A_4):\GL(2,\mathbb{Z}/4)$$C_6.S_4^2$$C_6.S_4^2$
Maximal under-subgroups:$C_6\times A_4^2$$C_6.\GL(2,\mathbb{Z}/4)$$C_6.\GL(2,\mathbb{Z}/4)$$(C_2^2\times C_6).S_4$$A_4^2:C_4$$A_4^2:C_4$$(C_3^2\times A_4):C_4$$(C_3^2\times A_4):C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times A_4^2.D_6$