Properties

Label 6912.ln.16.j1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3^2\times A_4):C_4$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7)(5,6), (1,2,3)(10,11,13), (1,3)(4,7,6,5)(8,15,12,14)(11,13), (1,2,3)(5,7,6), (4,6)(5,7)(8,12)(14,15), (4,7,5), (4,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3:S_4\times \GL(2,\mathbb{Z}/4)$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3.(C_3\times A_4^2).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_3^4.(Q_8\times A_4).D_6$
$W$$S_3\times C_6:S_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:(C_2\times S_4)$
Normal closure:$(C_3\times A_4^2):C_4$
Core:$C_6\times A_4$
Minimal over-subgroups:$(C_3\times A_4^2):C_4$$C_6^2:S_4$$C_3^2:\GL(2,\mathbb{Z}/4)$$C_3^2:(C_4\times S_4)$
Maximal under-subgroups:$C_6^2:C_6$$C_6^2:C_4$$C_6.S_4$$C_6.S_4$$C_6.S_4$$C_6.S_4$$C_3^3:C_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times A_4^2.D_6$