Subgroup ($H$) information
Description: | $D_6.\GL(2,\mathbb{Z}/4)$ |
Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\langle(4,7)(5,6), (4,7)(5,6)(8,9,15,10)(11,14,13,12), (1,2,3), (1,2), (4,5,7) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $D_6.S_4^2$ |
Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^3\times A_4^2.C_2^2\times S_3$ |
$\operatorname{Aut}(H)$ | $C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
$W$ | $\GL(2,\mathbb{Z}/4):D_6$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $S_3\times S_4^2$ |