Properties

Label 6912.ia.48.f1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:\GL(2,3)$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(8,9,15,10)(11,14,13,12), (1,2,3), (8,14,15,12)(9,11,10,13), (8,15)(9,10)(11,13)(12,14), (9,12,13)(10,14,11), (1,2)(9,10)(11,12)(13,14)\rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and solvable.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times S_4$
Normalizer:$D_6.S_4^2$
Complements:$C_2\times S_4$ $C_2\times S_4$ $C_2\times S_4$ $C_2\times S_4$ $C_2\times S_4$ $C_2\times S_4$
Minimal over-subgroups:$C_3^2:\GL(2,3)$$S_3\times \GL(2,3)$$C_6:\GL(2,3)$$C_6:\GL(2,3)$$S_3\times \GL(2,3)$$S_3\times \GL(2,3)$
Maximal under-subgroups:$C_3\times \SL(2,3)$$Q_8:S_3$$\GL(2,3)$$\GL(2,3)$$C_6:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$24$
Projective image$S_3\times S_4^2$