Subgroup ($H$) information
| Description: | $C_3:\GL(2,3)$ |
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\langle(8,9,15,10)(11,14,13,12), (1,2,3), (8,14,15,12)(9,11,10,13), (8,15)(9,10)(11,13)(12,14), (9,12,13)(10,14,11), (1,2)(9,10)(11,12)(13,14)\rangle$
|
| Derived length: | $4$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and solvable.
Ambient group ($G$) information
| Description: | $D_6.S_4^2$ |
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times S_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^3\times A_4^2.C_2^2\times S_3$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $W$ | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $24$ |
| Projective image | $S_3\times S_4^2$ |