Subgroup ($H$) information
Description: | $D_4\times \GL(2,3)$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\langle(5,7), (1,2)(4,5)(6,7), (8,14,15,12)(9,11,10,13), (5,7)(9,10)(11,12)(13,14) \!\cdots\! \rangle$
|
Derived length: | $4$ |
The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
Description: | $D_6.S_4^2$ |
Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^3\times A_4^2.C_2^2\times S_3$ |
$\operatorname{Aut}(H)$ | $A_4.C_2^6.C_2^2$ |
$W$ | $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $9$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $S_3\times S_4^2$ |