Properties

Label 6912.ia.18.m1
Order $ 2^{7} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times \GL(2,3)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(5,7), (1,2)(4,5)(6,7), (8,14,15,12)(9,11,10,13), (5,7)(9,10)(11,12)(13,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $A_4.C_2^6.C_2^2$
$W$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2\times D_4\times \GL(2,3)$
Normal closure:$D_6.S_4^2$
Core:$\GL(2,3)$
Minimal over-subgroups:$C_3:D_4\times \GL(2,3)$$C_2\times D_4\times \GL(2,3)$
Maximal under-subgroups:$D_4\times \SL(2,3)$$C_2^2\times \GL(2,3)$$C_2^2:\GL(2,3)$$C_2^2\times \GL(2,3)$$C_2^2:\GL(2,3)$$C_4\times \GL(2,3)$$C_4:\GL(2,3)$$D_4\times \SD_{16}$$D_4\times D_6$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3\times S_4^2$