Properties

Label 6912.hs.216.z1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(3,5)(4,6), (7,10)(8,9)(11,14)(12,13), (1,2)(3,4)(5,6)(7,12,11,8)(9,10,13,14), (7,14)(8,13)(9,12)(10,11), (7,12,11,8)(9,10,13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2^3:S_4\times S_3^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.A_4^2.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_2^4:D_4$
Normal closure:$C_2^3:S_4\times S_3^2$
Core:$C_2$
Minimal over-subgroups:$C_{12}:C_2^3$$C_2^4:C_4$$D_4\times C_2^3$$C_2^4:C_4$
Maximal under-subgroups:$C_2^2\times C_4$$C_2^2\times C_4$$C_2^4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$162$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$D_6^2:S_4$