Subgroup ($H$) information
| Description: | $C_2^3\times C_4$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\langle(3,5)(4,6), (7,10)(8,9)(11,14)(12,13), (1,2)(3,4)(5,6)(7,12,11,8)(9,10,13,14), (7,14)(8,13)(9,12)(10,11), (7,12,11,8)(9,10,13,14)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_2^3:S_4\times S_3^2$ |
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^2.A_4^2.C_2^6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \) |
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $162$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | $0$ |
| Projective image | $D_6^2:S_4$ |