Properties

Label 6912.hn.8.d1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6^2:C_{12}$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(7,12)(8,10)(9,14)(11,13), (7,13)(8,14)(9,10)(11,12), (1,3,5)(2,6,4), (1,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $F_9:C_2^2\times S_4$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$W$$C_6^2:C_{12}$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_6^2:C_{12}$
Normal closure:$D_4:C_6^2:C_{12}$
Core:$C_2\times C_3^2:C_4$
Minimal over-subgroups:$D_4:C_6^2:C_{12}$
Maximal under-subgroups:$C_6:S_3\times A_4$$C_6^2:C_{12}$$C_6^2:C_{12}$$C_2\times C_6^2:C_4$$C_2\times C_3^2:C_{12}$$C_2^3:C_{12}$

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$