Properties

Label 6912.hn.4.b1.a1
Order $ 2^{6} \cdot 3^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6^2:C_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,5)(2,6)(8,13)(10,11), (1,2,3,6,5,4)(7,14)(8,13)(9,12), (9,12)(10,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $(A_4\times C_3:S_3).C_2^5.C_2$
$W$$D_6^2:C_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times D_6^2:C_6$
Normal closure:$D_6^2:C_2^2:A_4$
Core:$D_6^2:C_2^2$
Minimal over-subgroups:$D_6^2:C_2^2:A_4$
Maximal under-subgroups:$D_6^2:C_6$$D_6^2:C_6$$C_2\times C_6^2:C_{12}$$D_6^2:C_6$$D_6^2:C_6$$D_6^2:C_6$$D_6^2:C_6$$D_6^2:C_2^2$$C_6\times \SOPlus(4,2)$$C_2^5:C_6$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$C_6^2.(D_4\times A_4)$