Properties

Label 6912.hn.144.bb1.b1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(8,13)(10,11), (9,12)(10,11), (7,14)(8,13)(9,12)(10,11), (1,3,5)(2,4,6), (1,6)(2,3)(4,5)(7,14)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2\times A_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$C_2\times A_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$S_3\times C_2\wr A_4$
Normal closure:$C_2\times D_6^2$
Core:$C_2^3$
Minimal over-subgroups:$C_2^2:C_6^2$$C_6^2:C_2^2$$C_2^3\times D_6$$C_2^4:C_6$$C_2^4:S_3$
Maximal under-subgroups:$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^4$
Autjugate subgroups:6912.hn.144.bb1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$