Properties

Label 6912.hm.32.j1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,6,5,2,3,4)(8,13)(9,12)(10,11), (8,13)(9,12), (1,3,5)(2,4,6)(8,11,12)(9,13,10), (8,9,10)(11,13,12), (9,12)(10,11), (1,3,5)(8,12,11)(9,10,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$A_4:D_6^2$
Normal closure:$C_3^2:C_2\wr S_4$
Core:$C_3^2$
Minimal over-subgroups:$C_6\times S_3\times A_4$$A_4\times S_3^2$$C_6^2:D_6$$A_4:S_3^2$
Maximal under-subgroups:$C_3^2\times A_4$$C_6\times A_4$$S_3\times A_4$$S_3\times A_4$$C_6\times D_6$$S_3\times C_3^2$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$(C_2\times D_6^2):S_4$