Subgroup ($H$) information
| Description: | $C_6\times S_3\times A_4$ |
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,3,5)(7,14)(8,9,11,13,12,10), (1,6,5,2,3,4)(7,14), (8,13)(9,12), (1,3,5) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $(C_2\times D_6^2):S_4$ |
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.(C_2^4\times A_4).C_2^4$ |
| $\operatorname{Aut}(H)$ | $A_4:D_6^2$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| $W$ | $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $8$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $-2$ |
| Projective image | $D_6^2:S_4$ |