Properties

Label 6912.he.6.b1
Order $ 2^{7} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.D_6^2$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,4,6), (9,12)(10,11), (1,5)(2,6)(9,12)(10,11), (7,13)(8,14)(9,10)(11,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Ambient group ($G$) information

Description: $S_3^2:C_2\wr A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $C_6^2.(C_2^4\times A_4).C_2^3$
$W$$D_6^2:(C_2\times A_4)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$S_3^2:C_2\wr A_4$
Complements:$C_6$ $C_6$
Minimal over-subgroups:$(C_2\times D_6^2):A_4$$(C_2\times D_6^2):D_4$
Maximal under-subgroups:$C_6^2.C_2^4$$D_6^2:C_2^2$$(C_6\times D_4).D_6$$(C_2\times C_{12}):D_{12}$$(C_6\times C_{12}):D_4$$C_2\wr C_2^2\times S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$D_6^2:(C_2\times A_4)$