Properties

Label 6912.he.12.ba1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_6\times D_4).D_6$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,4,6), (9,12)(10,11), (1,5)(2,6)(9,12)(10,11), (4,6)(7,12,14,9)(8,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $S_3^2:C_2\wr A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $C_3^2.C_2^6.C_2^4$
$W$$D_6^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times D_6^2):D_4$
Normal closure:$C_2^3.D_6^2$
Core:$C_6^2:C_2^2$
Minimal over-subgroups:$C_2^3.D_6^2$$D_6^2.D_4$$D_6^2.D_4$
Maximal under-subgroups:$C_6^2:C_2^3$$C_2^3.S_3^2$$C_6^2.D_4$$C_6^2.D_4$$C_2^3:C_4\times S_3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_6^2:(C_2\times A_4)$