Properties

Label 6912.he.24.de1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,4,6), (9,12)(10,11), (1,5)(2,6)(7,13)(8,14)(9,11)(10,12), (7,14)(8,13)(9,12)(10,11), (4,6)(10,11), (1,3,5)(2,6,4), (8,13)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $S_3^2:C_2\wr A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $C_6^2.C_2^6.C_2$
$W$$D_6^2:C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^3.D_6^2$
Normal closure:$C_2^3.D_6^2$
Core:$C_2\times C_6^2$
Minimal over-subgroups:$D_6^2:C_2^2$$(C_2\times C_{12}):D_{12}$
Maximal under-subgroups:$C_6:D_{12}$$C_6.D_{12}$$C_6^2:C_2^2$$C_6^2:C_2^2$$C_6^2:C_4$$C_2^4:S_3$$C_2^2:D_{12}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_6^2:(C_2\times A_4)$