Properties

Label 6912.fa.12.t1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6^2.C_2^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(9,11,14)(10,13,12), (1,6)(2,4)(3,5)(7,8)(9,10)(11,13)(12,14)(15,16), (1,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^2):D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_3:S_3.C_2^5.C_2^5$
$W$$C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_6:D_6.C_2^2$
Normal closure:$(C_2^3\times C_6^2):D_{12}$
Core:$C_6^2:C_2^2$
Minimal over-subgroups:$C_2\times D_6:D_6.C_2^2$
Maximal under-subgroups:$C_6^2.D_4$$C_6^2:D_4$$C_6^2.D_4$$D_6^2:C_2$$C_2\times C_6^2:C_4$$C_6^2:D_4$$C_6^2:D_4$$C_2^3:D_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_2^2\times C_6^2):D_{12}$