Properties

Label 6912.fa.108.o1
Order $ 2^{6} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,5)(2,7)(3,6)(4,8), (1,6)(2,4)(3,5)(7,8)(9,10)(11,13)(12,14)(15,16), (11,14)(12,13), (15,16), (1,8)(2,6)(3,7)(4,5), (3,6)(4,8)(11,14)(15,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^2):D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^6.D_4^2$, of order \(4096\)\(\medspace = 2^{12} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^4:D_4$
Normal closure:$(C_2^3\times C_6^2):D_{12}$
Core:$C_2^3$
Minimal over-subgroups:$D_6^2.C_2^2$$C_2^4:D_4$
Maximal under-subgroups:$C_2^3:C_4$$C_2^2\times D_4$$C_2^2.D_4$$C_2^2\times D_4$$C_2^3\times C_4$$C_4:D_4$$C_4:D_4$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_2^2\times C_6^2):D_{12}$