Properties

Label 688.28.43.a1.a1
Order $ 2^{4} $
Index $ 43 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(43\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{43}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_4\times D_{86}$
Order: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Exponent: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{86}.C_{42}.C_2^4$
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_2^2\times C_4$
Normal closure:$C_4\times D_{86}$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_4\times D_{86}$
Maximal under-subgroups:$C_2\times C_4$$C_2^3$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$43$
Möbius function$-1$
Projective image$D_{43}$