Properties

Label 679477248.t.6._.D
Order $ 2^{22} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}.S_4^3:C_2$
Order: \(113246208\)\(\medspace = 2^{22} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(23,24)(35,36), (5,6)(7,13,8,14)(9,16,10,15)(11,18,12,17)(25,26)(27,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^{10}.(S_4^2.S_4\wr C_2)$
Order: \(679477248\)\(\medspace = 2^{23} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(21743271936\)\(\medspace = 2^{28} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ Group of order \(1811939328\)\(\medspace = 2^{26} \cdot 3^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$6$
Möbius function not computed
Projective image not computed