Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v \mid f^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([25, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 165786000, 2017184901, 1285691226, 600474302, 3857169777, 433307452, 9786228003, 5014074028, 787330653, 333870078, 5691358004, 2953321029, 390402554, 1555685829, 354, 14011627205, 4122319230, 4066590055, 766720280, 82944130, 2270822406, 135668431, 2485812056, 941070981, 553110706, 154838906, 506, 17694950407, 55334432, 19257, 43550482, 17630507, 692532, 17627068808, 10805821233, 57591058, 1360824383, 238379058, 22568758, 66615908, 98058, 658, 235104009, 9068688034, 3539016059, 2543652084, 608292109, 483849134, 221187159, 6686143210, 6456582035, 6297112860, 1208859385, 449004710, 677251710, 247660, 282335, 43086660, 14362660, 17302204811, 1064016036, 6902625661, 2920212086, 265842111, 145936, 22122211, 5531636, 25334899212, 11586135637, 8134939862, 4050621987, 1602426262, 589911212, 421362, 163987, 43937612, 2000937, 1857945613, 285465638, 4838463, 48384088, 1209713, 5745738, 1411363, 756188, 31186944014, 77760039, 49248064, 12960089, 12312114, 324139, 1080164, 432189, 28311552015, 210124840, 141004865, 70502490, 35251315, 13132940, 806565, 172990, 4512153616, 5875241, 117504066, 2937691, 29376116, 5508141, 244966, 612191, 43794432017, 373248042, 68428892, 5702567, 3888192, 15969484818, 72230443, 128044868, 21340893, 32011318, 2052143, 7797768, 1710193, 193536019, 20791296044, 3096576069, 221184094, 1492992119, 1133568144, 3072219, 2304244, 14515220, 19043942445, 6270566470, 348364895, 812851320, 174182545, 4838620, 806645, 45619221, 29196288046, 5839257671, 2919628896, 729907321, 243302546, 74342621, 33792246, 270259222, 10174464047, 11191910472, 6613401697, 254361722, 381542547, 91853022, 52992247, 613785623, 3715891298, 3715891323, 1061683348, 58982623, 44237048, 362880024, 7741440099, 1935360124, 1658880149, 92160224, 15360249]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v := Explode([G.1, G.2, G.3, G.4, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25]); AssignNames(~G, ["a", "b", "c", "d", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v"]);
gap:G := PcGroupCode(2821597677674657638016045925292905724155285202667084542777020725613649322868321950885411403422677387587753091974511176642589372359095730379440250404172942178971792636095118162277174634131567981936827773788888463939187644208408527280555984531471935787581256446641390582558966077691632428402393890813514716009012788743473957566892653967557750487685738072020361039287415035798594418722837071928785023858667850958460126117956190556396293965441113996689375624752609076578600685506056190714202825410025816977680069926614260489717431760027573541347312205680138437694083832249065246109074826376632252893790081637960343355788597742666773550946090786152531789684762181691836030732019407167283191285938201723730558680671395150877908537852347931779483489156326804694670028145440861596242092610138750377711644767554775431653758007130427795072883738153975346065198012868693443681383351022069756509809791987788882996176969235887446452276551252121167052558035303878067481523246121560265254288544191711796055906215832936958652655700806198151989334288299902750417218613996996133065069081058172426267785508257282965757729747001183032089803878771228488536055833833872703374560098033975878872556309767997970449106304538719120182889225764873536422078062680552929662809304548415323628603932396975996956203503814561585590349722708159377544729442443256153245430404608973122115676186690721089172794934331699522315685417774683200888139485539801510817668405035008,113246208); a := G.1; b := G.2; c := G.3; d := G.4; e := G.5; f := G.7; g := G.9; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15; m := G.16; n := G.17; o := G.18; p := G.19; q := G.20; r := G.21; s := G.22; t := G.23; u := G.24; v := G.25;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(2821597677674657638016045925292905724155285202667084542777020725613649322868321950885411403422677387587753091974511176642589372359095730379440250404172942178971792636095118162277174634131567981936827773788888463939187644208408527280555984531471935787581256446641390582558966077691632428402393890813514716009012788743473957566892653967557750487685738072020361039287415035798594418722837071928785023858667850958460126117956190556396293965441113996689375624752609076578600685506056190714202825410025816977680069926614260489717431760027573541347312205680138437694083832249065246109074826376632252893790081637960343355788597742666773550946090786152531789684762181691836030732019407167283191285938201723730558680671395150877908537852347931779483489156326804694670028145440861596242092610138750377711644767554775431653758007130427795072883738153975346065198012868693443681383351022069756509809791987788882996176969235887446452276551252121167052558035303878067481523246121560265254288544191711796055906215832936958652655700806198151989334288299902750417218613996996133065069081058172426267785508257282965757729747001183032089803878771228488536055833833872703374560098033975878872556309767997970449106304538719120182889225764873536422078062680552929662809304548415323628603932396975996956203503814561585590349722708159377544729442443256153245430404608973122115676186690721089172794934331699522315685417774683200888139485539801510817668405035008,113246208)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.7; g = G.9; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24; v = G.25;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(2821597677674657638016045925292905724155285202667084542777020725613649322868321950885411403422677387587753091974511176642589372359095730379440250404172942178971792636095118162277174634131567981936827773788888463939187644208408527280555984531471935787581256446641390582558966077691632428402393890813514716009012788743473957566892653967557750487685738072020361039287415035798594418722837071928785023858667850958460126117956190556396293965441113996689375624752609076578600685506056190714202825410025816977680069926614260489717431760027573541347312205680138437694083832249065246109074826376632252893790081637960343355788597742666773550946090786152531789684762181691836030732019407167283191285938201723730558680671395150877908537852347931779483489156326804694670028145440861596242092610138750377711644767554775431653758007130427795072883738153975346065198012868693443681383351022069756509809791987788882996176969235887446452276551252121167052558035303878067481523246121560265254288544191711796055906215832936958652655700806198151989334288299902750417218613996996133065069081058172426267785508257282965757729747001183032089803878771228488536055833833872703374560098033975878872556309767997970449106304538719120182889225764873536422078062680552929662809304548415323628603932396975996956203503814561585590349722708159377544729442443256153245430404608973122115676186690721089172794934331699522315685417774683200888139485539801510817668405035008,113246208)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.7; g = G.9; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20; r = G.21; s = G.22; t = G.23; u = G.24; v = G.25;
|
Permutation group: | Degree $36$
$\langle(1,12,14,35)(2,11,13,36)(3,10,15,33)(4,9,16,34)(5,8,18,31)(6,7,17,32)(19,29,20,30) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,12,14,35)(2,11,13,36)(3,10,15,33)(4,9,16,34)(5,8,18,31)(6,7,17,32)(19,29,20,30)(21,27)(22,28)(23,26)(24,25), (1,17,27,2,18,28)(3,14,29)(4,13,30)(5,15,26)(6,16,25)(7,12,9)(8,11,10)(19,35,21,31,24,33)(20,36,22,32,23,34), (1,27,17)(2,28,18)(3,30,13,4,29,14)(5,25,16)(6,26,15)(7,33,11,32,10,36)(8,34,12,31,9,35)(19,22,23,20,21,24), (1,16,26,3,13,27)(2,15,25,4,14,28)(5,18,30,6,17,29)(7,22,31,9,20,34,8,21,32,10,19,33)(11,24,36)(12,23,35) >;
gap:G := Group( (1,12,14,35)(2,11,13,36)(3,10,15,33)(4,9,16,34)(5,8,18,31)(6,7,17,32)(19,29,20,30)(21,27)(22,28)(23,26)(24,25), (1,17,27,2,18,28)(3,14,29)(4,13,30)(5,15,26)(6,16,25)(7,12,9)(8,11,10)(19,35,21,31,24,33)(20,36,22,32,23,34), (1,27,17)(2,28,18)(3,30,13,4,29,14)(5,25,16)(6,26,15)(7,33,11,32,10,36)(8,34,12,31,9,35)(19,22,23,20,21,24), (1,16,26,3,13,27)(2,15,25,4,14,28)(5,18,30,6,17,29)(7,22,31,9,20,34,8,21,32,10,19,33)(11,24,36)(12,23,35) );
sage:G = PermutationGroup(['(1,12,14,35)(2,11,13,36)(3,10,15,33)(4,9,16,34)(5,8,18,31)(6,7,17,32)(19,29,20,30)(21,27)(22,28)(23,26)(24,25)', '(1,17,27,2,18,28)(3,14,29)(4,13,30)(5,15,26)(6,16,25)(7,12,9)(8,11,10)(19,35,21,31,24,33)(20,36,22,32,23,34)', '(1,27,17)(2,28,18)(3,30,13,4,29,14)(5,25,16)(6,26,15)(7,33,11,32,10,36)(8,34,12,31,9,35)(19,22,23,20,21,24)', '(1,16,26,3,13,27)(2,15,25,4,14,28)(5,18,30,6,17,29)(7,22,31,9,20,34,8,21,32,10,19,33)(11,24,36)(12,23,35)'])
|
Transitive group: |
36T78971 |
|
|
|
more information |
Direct product: |
not computed |
Semidirect product: |
not computed |
Trans. wreath product: |
not computed |
Possibly split product: |
$(C_2^{16}.S_3^3)$ . $D_4$ (12) |
$C_2^{14}$ . $(S_4^2:D_6)$ |
$C_2^{10}$ . $(S_4^3.D_4)$ |
$C_2^{18}$ . $(S_3^3:C_2)$ |
all 108 |
Elements of the group are displayed as permutations of degree 36.
The $5184 \times 5184$ rational character table is not available for this group.