Properties

Label 6768958.a.833.B
Order $ 2 \cdot 17 \cdot 239 $
Index $ 7^{2} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{239}:C_{34}$
Order: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Index: \(833\)\(\medspace = 7^{2} \cdot 17 \)
Exponent: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Generators: $a^{119}, a^{14}b^{63}, b^{119}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 17$.

Ambient group ($G$) information

Description: $C_{28441}:C_{238}$
Order: \(6768958\)\(\medspace = 2 \cdot 7^{2} \cdot 17^{2} \cdot 239 \)
Exponent: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_7\times C_{119}$
Order: \(833\)\(\medspace = 7^{2} \cdot 17 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Automorphism Group: $C_{16}\times C_6.\SO(3,7)$
Outer Automorphisms: $C_{16}\times C_6.\SO(3,7)$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{28441}.C_{357}.C_8.C_2^3$
$\operatorname{Aut}(H)$ $F_{239}$, of order \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
$W$$C_{239}:C_{119}$, of order \(28441\)\(\medspace = 7 \cdot 17 \cdot 239 \)

Related subgroups

Centralizer:$C_{238}$
Normalizer:$C_{28441}:C_{238}$
Complements:$C_7\times C_{119}$ $C_7\times C_{119}$
Minimal over-subgroups:$C_{4063}:C_{34}$$C_{1673}:C_{34}$$C_{239}:C_{238}$
Maximal under-subgroups:$C_{239}:C_{17}$$C_{478}$$C_{34}$

Other information

Number of subgroups in this autjugacy class$17$
Number of conjugacy classes in this autjugacy class$17$
Möbius function$-7$
Projective image$C_{28441}:C_{119}$