Properties

Label 6768958.a.8126.B
Order $ 7^{2} \cdot 17 $
Index $ 2 \cdot 17 \cdot 239 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{119}$
Order: \(833\)\(\medspace = 7^{2} \cdot 17 \)
Index: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Generators: $a^{170}b^{8687}, b^{20315}, a^{14}b^{105}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{28441}:C_{238}$
Order: \(6768958\)\(\medspace = 2 \cdot 7^{2} \cdot 17^{2} \cdot 239 \)
Exponent: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{28441}.C_{357}.C_8.C_2^3$
$\operatorname{Aut}(H)$ $C_{16}\times C_6.\SO(3,7)$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{119}\times C_{238}$
Normalizer:$C_{119}\times C_{238}$
Normal closure:$C_{28441}:C_{119}$
Core:$C_7$
Minimal over-subgroups:$C_{1673}:C_{119}$$C_{119}^2$$C_7\times C_{238}$
Maximal under-subgroups:$C_{119}$$C_{119}$$C_7^2$

Other information

Number of subgroups in this autjugacy class$4063$
Number of conjugacy classes in this autjugacy class$17$
Möbius function$-1$
Projective image$C_{4063}:C_{238}$