Subgroup ($H$) information
Description: | $C_5\times C_{15}$ |
Order: | \(75\)\(\medspace = 3 \cdot 5^{2} \) |
Index: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
Generators: |
$c^{10}, c^{3}d^{12}, bd^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $(C_5\times C_{15}^2):C_6$ |
Order: | \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
Description: | $C_3^2\times D_5$ |
Order: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Automorphism Group: | $F_5\times \GL(2,3)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
Outer Automorphisms: | $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
$W$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Centralizer: | $C_5\times C_{15}^2$ | |||
Normalizer: | $(C_5\times C_{15}^2):C_6$ | |||
Minimal over-subgroups: | $C_5^2\times C_{15}$ | $C_{15}^2$ | $C_5^2:C_3^2$ | $C_{15}:D_5$ |
Maximal under-subgroups: | $C_5^2$ | $C_{15}$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $15$ |
Projective image | $C_3\times C_5^3:C_6$ |