Properties

Label 6750.b.90.a1
Order $ 3 \cdot 5^{2} $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{15}$
Order: \(75\)\(\medspace = 3 \cdot 5^{2} \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $c^{10}, c^{3}d^{12}, bd^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_5\times C_{15}^2):C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_3^2\times D_5$
Order: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $F_5\times \GL(2,3)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_5\times C_{15}^2$
Normalizer:$(C_5\times C_{15}^2):C_6$
Minimal over-subgroups:$C_5^2\times C_{15}$$C_{15}^2$$C_5^2:C_3^2$$C_{15}:D_5$
Maximal under-subgroups:$C_5^2$$C_{15}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$15$
Projective image$C_3\times C_5^3:C_6$