Properties

Label 6750.b.18.a1
Order $ 3 \cdot 5^{3} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2\times C_{15}$
Order: \(375\)\(\medspace = 3 \cdot 5^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $c^{10}, c^{3}d^{9}, d^{3}, b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the socle, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 5$ (hence hyperelementary).

Ambient group ($G$) information

Description: $(C_5\times C_{15}^2):C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_4.\PSL(3,5)$
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_5\times C_{15}^2$
Normalizer:$(C_5\times C_{15}^2):C_6$
Minimal over-subgroups:$C_5\times C_{15}^2$$C_5^3:C_3^2$$C_5^3:C_6$
Maximal under-subgroups:$C_5^3$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3$
Projective image$C_3\times C_5^3:C_6$