Subgroup ($H$) information
| Description: | $C_2^3:D_6$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Index: | \(7\) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a, d^{2}, c^{14}, b, c^{21}, d^{3}$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $D_{42}:C_2^3$ |
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.C_2^4.C_7.C_3^3.C_2^3$ |
| $\operatorname{Aut}(H)$ | $S_3\times C_2^6:S_4$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $S_3\times C_2^6:S_4$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $7$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $S_3\times D_7$ |