Properties

Label 672.1102.32.a1
Order $ 3 \cdot 7 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_3$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $c^{4}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_2^4.F_7$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^3\times C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_2^4:C_2^3:\GL(3,2)$, of order \(903168\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
$W$$F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^4.F_7$
Complements:$C_2^3\times C_4$
Minimal over-subgroups:$C_7:C_6$$C_7:C_6$
Maximal under-subgroups:$C_7$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^4.F_7$