Subgroup ($H$) information
| Description: | $C_2^3\times C_4$ | 
| Order: | \(32\)\(\medspace = 2^{5} \) | 
| Index: | \(21\)\(\medspace = 3 \cdot 7 \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | $a, b, c^{9}, d^{7}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_2^4.F_7$ | 
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_7\times C_2^4:C_2^3:\GL(3,2)$, of order \(903168\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7^{2} \) | 
| $\operatorname{Aut}(H)$ | $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \) | 
| $\operatorname{res}(S)$ | $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $7$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $1$ | 
| Projective image | $F_7$ | 
