Properties

Label 672.1049.7.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:C_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(7\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,5)(2,3)(4,7)(6,8), (1,2)(3,5)(4,6)(7,8), (1,4)(2,6)(3,8)(5,7), (9,10,11,12), (9,11)(10,12), (2,4,6)(3,7,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $F_8:C_{12}$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_8:C_6$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times A_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2^3:C_{12}$
Normal closure:$F_8:C_{12}$
Core:$C_2^3\times C_4$
Minimal over-subgroups:$F_8:C_{12}$
Maximal under-subgroups:$C_4\times A_4$$C_4\times A_4$$C_2^2\times A_4$$C_2^3\times C_4$$C_2\times C_{12}$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$F_8:C_3$