Subgroup ($H$) information
| Description: | $C_2^3:C_{12}$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Index: | \(7\) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(1,5)(2,3)(4,7)(6,8), (1,2)(3,5)(4,6)(7,8), (1,4)(2,6)(3,8)(5,7), (9,10,11,12), (9,11)(10,12), (2,4,6)(3,7,8)\rangle$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $F_8:C_{12}$ |
| Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_8:C_6$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2\times A_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $7$ |
| Möbius function | $-1$ |
| Projective image | $F_8:C_3$ |