Properties

Label 6718464.bbw.32._.J
Order $ 2^{5} \cdot 3^{8} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(209952\)\(\medspace = 2^{5} \cdot 3^{8} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: not computed
Generators: $\langle(19,20,21)(22,23,24)(25,26,27)(28,31,34)(29,32,35)(30,33,36), (1,3)(4,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^8:C_4^2.Q_{16}:C_2^2$
Order: \(6718464\)\(\medspace = 2^{10} \cdot 3^{8} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times \SD_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $D_4^2:C_2$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^8:C_4^2.D_4^2:D_4$, of order \(53747712\)\(\medspace = 2^{13} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed