Properties

Label 6718464.bbw
Order \( 2^{10} \cdot 3^{8} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36), (1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31), (1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24), (1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32) >;
 
Copy content gap:G := Group( (1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36), (1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31), (1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24), (1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32) );
 
Copy content sage:G = PermutationGroup(['(1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36)', '(1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31)', '(1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24)', '(1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(363684519855727186920687131171428705088377058962746720762658457505216907640549625314287683516749894447815515203264858343203604054585081116220949421437420309903985745761588086527276656184666742549549902742840030839753598064881874023983269548275928658539969708281925389633644572181449600806249825479194255863335308891119965644854826612694415589604934276298203491404110273754961924263332841590487900429119562376739454870061301804306954264928153233002206799168064285705026442920992863814334812619732477580715883352333298389103733680721104924745589221675995376370760153404544509399842291244247520978930721860787955820609749662103765701081465918583819247010076617436340114807002148179034642519055764751420916587443613480865308782983772222986700924575587106546275332730181117290221225449747915372183469925947708209139019716285136300241716852568274322606574705574698768169289676281768221923559079286748941062504703,6718464)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18;
 

Group information

Description:$C_3^8:C_4^2.Q_{16}:C_2^2$
Order: \(6718464\)\(\medspace = 2^{10} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^8:C_4^2.D_4^2:D_4$, of order \(53747712\)\(\medspace = 2^{13} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24
Elements 1 12231 6560 709560 453600 2146176 1337472 1679616 373248 6718464
Conjugacy classes   1 7 15 20 20 25 20 8 4 120
Divisions 1 7 15 19 20 17 16 4 2 101
Autjugacy classes 1 6 10 15 14 17 11 1 2 77

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{8}=e^{12}=f^{3}=g^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 71748864, 102138841, 91, 311462282, 146, 206448195, 40689849, 203041444, 287318182, 102220240, 64258798, 32619676, 518216837, 324278231, 139130825, 82474475, 8185397, 311, 634886790, 217635288, 55389642, 45127212, 35797686, 366, 768264199, 380224537, 212009515, 5402941, 13604047, 836946440, 309707738, 34494380, 14624126, 14595632, 26989298, 14692220, 6860186, 476, 628439049, 592646427, 189457965, 119174463, 38759121, 2070819, 15671637, 716535, 531, 843651082, 627720220, 322679854, 105481792, 73713106, 26376868, 17132662, 3304, 1042219019, 117780509, 60162095, 144930881, 38679635, 27731045, 13817207, 10505, 5344859, 2676413, 1024358412, 311261214, 346664496, 185193282, 83161812, 27159078, 23149272, 33834, 3386604, 8598, 632733709, 400877599, 385394737, 192052291, 13692757, 8846311, 4564345, 109003, 1596829, 2236423, 281733134, 310625312, 409605170, 34352708, 35493206, 37178024, 3663482, 350060, 4179758, 1603976, 1369571343, 211451937, 426000435, 51425349, 50430039, 14183529, 10368123, 1119885, 5090847, 280113, 869216272, 600523810, 314049076, 201441094, 35819224, 20896234, 3314716, 3569326, 3161752, 1421242, 96878609, 183140387, 368603189, 953927, 95240537, 54483947, 21684797, 11337551, 7546769, 1423187]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.9, G.12, G.13, G.14, G.15, G.16, G.17, G.18]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4", "e", "e2", "e4", "f", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(363684519855727186920687131171428705088377058962746720762658457505216907640549625314287683516749894447815515203264858343203604054585081116220949421437420309903985745761588086527276656184666742549549902742840030839753598064881874023983269548275928658539969708281925389633644572181449600806249825479194255863335308891119965644854826612694415589604934276298203491404110273754961924263332841590487900429119562376739454870061301804306954264928153233002206799168064285705026442920992863814334812619732477580715883352333298389103733680721104924745589221675995376370760153404544509399842291244247520978930721860787955820609749662103765701081465918583819247010076617436340114807002148179034642519055764751420916587443613480865308782983772222986700924575587106546275332730181117290221225449747915372183469925947708209139019716285136300241716852568274322606574705574698768169289676281768221923559079286748941062504703,6718464); a := G.1; b := G.2; c := G.5; d := G.6; e := G.9; f := G.12; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(363684519855727186920687131171428705088377058962746720762658457505216907640549625314287683516749894447815515203264858343203604054585081116220949421437420309903985745761588086527276656184666742549549902742840030839753598064881874023983269548275928658539969708281925389633644572181449600806249825479194255863335308891119965644854826612694415589604934276298203491404110273754961924263332841590487900429119562376739454870061301804306954264928153233002206799168064285705026442920992863814334812619732477580715883352333298389103733680721104924745589221675995376370760153404544509399842291244247520978930721860787955820609749662103765701081465918583819247010076617436340114807002148179034642519055764751420916587443613480865308782983772222986700924575587106546275332730181117290221225449747915372183469925947708209139019716285136300241716852568274322606574705574698768169289676281768221923559079286748941062504703,6718464)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(363684519855727186920687131171428705088377058962746720762658457505216907640549625314287683516749894447815515203264858343203604054585081116220949421437420309903985745761588086527276656184666742549549902742840030839753598064881874023983269548275928658539969708281925389633644572181449600806249825479194255863335308891119965644854826612694415589604934276298203491404110273754961924263332841590487900429119562376739454870061301804306954264928153233002206799168064285705026442920992863814334812619732477580715883352333298389103733680721104924745589221675995376370760153404544509399842291244247520978930721860787955820609749662103765701081465918583819247010076617436340114807002148179034642519055764751420916587443613480865308782983772222986700924575587106546275332730181117290221225449747915372183469925947708209139019716285136300241716852568274322606574705574698768169289676281768221923559079286748941062504703,6718464)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18;
 
Permutation group:Degree $36$ $\langle(1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36), (1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31), (1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24), (1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32) >;
 
Copy content gap:G := Group( (1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36), (1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31), (1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24), (1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32) );
 
Copy content sage:G = PermutationGroup(['(1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36)', '(1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31)', '(1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24)', '(1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32)'])
 
Transitive group: 36T55997 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^8:C_4^2.D_4)$ . $D_4$ (4) $(C_3^8.C_4^3.C_2)$ . $D_4$ (4) $(C_3^8:C_4^2.Q_8)$ . $C_2^3$ (4) $(C_3^8:(C_4^3.D_4))$ . $C_2$ (2) all 56

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 136 normal subgroups (58 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4:\OD_{16}.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $120 \times 120$ character table is not available for this group.

Rational character table

The $101 \times 101$ rational character table is not available for this group.