| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{8}=e^{12}=f^{3}=g^{3}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([18, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 71748864, 102138841, 91, 311462282, 146, 206448195, 40689849, 203041444, 287318182, 102220240, 64258798, 32619676, 518216837, 324278231, 139130825, 82474475, 8185397, 311, 634886790, 217635288, 55389642, 45127212, 35797686, 366, 768264199, 380224537, 212009515, 5402941, 13604047, 836946440, 309707738, 34494380, 14624126, 14595632, 26989298, 14692220, 6860186, 476, 628439049, 592646427, 189457965, 119174463, 38759121, 2070819, 15671637, 716535, 531, 843651082, 627720220, 322679854, 105481792, 73713106, 26376868, 17132662, 3304, 1042219019, 117780509, 60162095, 144930881, 38679635, 27731045, 13817207, 10505, 5344859, 2676413, 1024358412, 311261214, 346664496, 185193282, 83161812, 27159078, 23149272, 33834, 3386604, 8598, 632733709, 400877599, 385394737, 192052291, 13692757, 8846311, 4564345, 109003, 1596829, 2236423, 281733134, 310625312, 409605170, 34352708, 35493206, 37178024, 3663482, 350060, 4179758, 1603976, 1369571343, 211451937, 426000435, 51425349, 50430039, 14183529, 10368123, 1119885, 5090847, 280113, 869216272, 600523810, 314049076, 201441094, 35819224, 20896234, 3314716, 3569326, 3161752, 1421242, 96878609, 183140387, 368603189, 953927, 95240537, 54483947, 21684797, 11337551, 7546769, 1423187]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.9, G.12, G.13, G.14, G.15, G.16, G.17, G.18]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4", "e", "e2", "e4", "f", "g", "h", "i", "j", "k", "l"]);
gap:G := PcGroupCode(363684519855727186920687131171428705088377058962746720762658457505216907640549625314287683516749894447815515203264858343203604054585081116220949421437420309903985745761588086527276656184666742549549902742840030839753598064881874023983269548275928658539969708281925389633644572181449600806249825479194255863335308891119965644854826612694415589604934276298203491404110273754961924263332841590487900429119562376739454870061301804306954264928153233002206799168064285705026442920992863814334812619732477580715883352333298389103733680721104924745589221675995376370760153404544509399842291244247520978930721860787955820609749662103765701081465918583819247010076617436340114807002148179034642519055764751420916587443613480865308782983772222986700924575587106546275332730181117290221225449747915372183469925947708209139019716285136300241716852568274322606574705574698768169289676281768221923559079286748941062504703,6718464); a := G.1; b := G.2; c := G.5; d := G.6; e := G.9; f := G.12; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(363684519855727186920687131171428705088377058962746720762658457505216907640549625314287683516749894447815515203264858343203604054585081116220949421437420309903985745761588086527276656184666742549549902742840030839753598064881874023983269548275928658539969708281925389633644572181449600806249825479194255863335308891119965644854826612694415589604934276298203491404110273754961924263332841590487900429119562376739454870061301804306954264928153233002206799168064285705026442920992863814334812619732477580715883352333298389103733680721104924745589221675995376370760153404544509399842291244247520978930721860787955820609749662103765701081465918583819247010076617436340114807002148179034642519055764751420916587443613480865308782983772222986700924575587106546275332730181117290221225449747915372183469925947708209139019716285136300241716852568274322606574705574698768169289676281768221923559079286748941062504703,6718464)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(363684519855727186920687131171428705088377058962746720762658457505216907640549625314287683516749894447815515203264858343203604054585081116220949421437420309903985745761588086527276656184666742549549902742840030839753598064881874023983269548275928658539969708281925389633644572181449600806249825479194255863335308891119965644854826612694415589604934276298203491404110273754961924263332841590487900429119562376739454870061301804306954264928153233002206799168064285705026442920992863814334812619732477580715883352333298389103733680721104924745589221675995376370760153404544509399842291244247520978930721860787955820609749662103765701081465918583819247010076617436340114807002148179034642519055764751420916587443613480865308782983772222986700924575587106546275332730181117290221225449747915372183469925947708209139019716285136300241716852568274322606574705574698768169289676281768221923559079286748941062504703,6718464)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18;
|
| Permutation group: | Degree $36$
$\langle(1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36), (1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31), (1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24), (1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32) >;
gap:G := Group( (1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36), (1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31), (1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24), (1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32) );
sage:G = PermutationGroup(['(1,3,8,2,4,5,9,6)(10,17,11,12,13,18,15,14)(20,26,22,23,21,24,25,27)(28,35,32,33,29,31,34,36)', '(1,4,8,7,3,9,5,6)(10,12,18,11,15,13,16,14)(19,21,25,22,26,27,20,23)(29,32,33,34,30,36,35,31)', '(1,5,6,2)(3,9,4,7)(10,36,18,33,14,30)(11,35,16,32,15,29)(12,34,17,31,13,28)(19,20,27,26)(21,22,25,24)', '(1,12,25,28)(2,15,20,30,4,13,23,35,3,18,24,29,7,17,21,33)(5,16,27,34,6,10,19,36,9,14,26,31,8,11,22,32)'])
|
| Transitive group: |
36T55997 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^8:C_4^2.D_4)$ . $D_4$ (4) |
$(C_3^8.C_4^3.C_2)$ . $D_4$ (4) |
$(C_3^8:C_4^2.Q_8)$ . $C_2^3$ (4) |
$(C_3^8:(C_4^3.D_4))$ . $C_2$ (2) |
all 56 |
Elements of the group are displayed as permutations of degree 36.
The $120 \times 120$ character table is not available for this group.
The $101 \times 101$ rational character table is not available for this group.