Properties

Label 663552.ja.8.A
Order $ 2^{10} \cdot 3^{4} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:S_4^2.A_4$
Order: \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(3,7,11)(4,8,9)(5,10,6), (1,10,8,7,6,9,11,5,12)(2,4,3)(14,15,16), (4,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $A_4^3.C_2^4:D_{12}$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^4.C_6.C_2^5$, of order \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_4^3.A_4.S_4$, of order \(3981312\)\(\medspace = 2^{14} \cdot 3^{5} \)
$W$$A_4:S_4^2.S_4$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^3.C_2^4:D_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^3.C_2^4:D_{12}$