Properties

Label 663552.ja
Order \( 2^{13} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $20$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (2,4,6,9)(5,8,10,12)(7,11)(13,14,16,15)(17,19)(18,20), (1,2,3,5,7,10,11,6)(13,14,15,16)(17,18) >;
 
Copy content gap:G := Group( (2,4,6,9)(5,8,10,12)(7,11)(13,14,16,15)(17,19)(18,20), (1,2,3,5,7,10,11,6)(13,14,15,16)(17,18) );
 
Copy content sage:G = PermutationGroup(['(2,4,6,9)(5,8,10,12)(7,11)(13,14,16,15)(17,19)(18,20)', '(1,2,3,5,7,10,11,6)(13,14,15,16)(17,18)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(490553586594154778931544982398633726997686287797494105227821718821266997274257052412879679335228057767862716579510367764559903932462461925212188592345306250916239737972892848888636835726463916413314798043294153307379145905089210229661469323211743145368336232509229317005874943692316216006005991800588475011751337103624173149435608460327636223759903911916226178332813996231975658178684456701138608854937261786956721827550324089577944041353237223967808643496215242437412266397864130741161856887137386853930526918078364288217869588906638011853301080625785080663994920078947656088813834216768,663552)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 

Group information

Description:$A_4^3.C_2^4:D_{12}$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^6.C_3^3.C_2^4.C_6.C_2^5$, of order \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 7423 5336 104192 79400 27648 36864 236800 36864 55296 73728 663552
Conjugacy classes   1 33 4 94 44 8 2 76 2 8 4 276
Divisions 1 33 4 80 44 8 2 54 2 4 2 234
Autjugacy classes 1 28 4 47 41 2 1 38 1 1 1 165

Minimal presentations

Permutation degree:$20$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid c^{2}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 11192256, 8922077, 86, 26124854, 138, 17073443, 3698166, 14284, 692601, 272378, 15100, 12714917, 853150, 1032483, 104402, 1093, 294, 639750, 20700311, 2056360, 8625, 1026, 37248775, 18624408, 10053161, 5008666, 4172, 398, 7402760, 3701401, 4762626, 132251, 3765, 21248649, 29531066, 15667243, 222420, 905837, 471334, 232671, 502, 215434, 17979, 780956, 3033949, 53934, 27023, 16920587, 39657628, 7402797, 1982942, 1189807, 1960944, 297545, 238810, 121323, 76759500, 14320829, 859294, 3437055, 8121, 2834, 3701389, 14805534, 19740719, 154288, 616977, 308546, 3022, 4467, 2643854, 58164511, 25116528, 10905905, 716122, 358119, 234206, 21587, 7834, 80372751, 45239072, 18389425, 11838594, 3348947, 1674532, 484821, 17978128, 8989089, 374594, 749155, 93737, 348669, 7955]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.8, G.10, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(490553586594154778931544982398633726997686287797494105227821718821266997274257052412879679335228057767862716579510367764559903932462461925212188592345306250916239737972892848888636835726463916413314798043294153307379145905089210229661469323211743145368336232509229317005874943692316216006005991800588475011751337103624173149435608460327636223759903911916226178332813996231975658178684456701138608854937261786956721827550324089577944041353237223967808643496215242437412266397864130741161856887137386853930526918078364288217869588906638011853301080625785080663994920078947656088813834216768,663552); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(490553586594154778931544982398633726997686287797494105227821718821266997274257052412879679335228057767862716579510367764559903932462461925212188592345306250916239737972892848888636835726463916413314798043294153307379145905089210229661469323211743145368336232509229317005874943692316216006005991800588475011751337103624173149435608460327636223759903911916226178332813996231975658178684456701138608854937261786956721827550324089577944041353237223967808643496215242437412266397864130741161856887137386853930526918078364288217869588906638011853301080625785080663994920078947656088813834216768,663552)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(490553586594154778931544982398633726997686287797494105227821718821266997274257052412879679335228057767862716579510367764559903932462461925212188592345306250916239737972892848888636835726463916413314798043294153307379145905089210229661469323211743145368336232509229317005874943692316216006005991800588475011751337103624173149435608460327636223759903911916226178332813996231975658178684456701138608854937261786956721827550324089577944041353237223967808643496215242437412266397864130741161856887137386853930526918078364288217869588906638011853301080625785080663994920078947656088813834216768,663552)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Permutation group:Degree $20$ $\langle(2,4,6,9)(5,8,10,12)(7,11)(13,14,16,15)(17,19)(18,20), (1,2,3,5,7,10,11,6)(13,14,15,16)(17,18)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (2,4,6,9)(5,8,10,12)(7,11)(13,14,16,15)(17,19)(18,20), (1,2,3,5,7,10,11,6)(13,14,15,16)(17,18) >;
 
Copy content gap:G := Group( (2,4,6,9)(5,8,10,12)(7,11)(13,14,16,15)(17,19)(18,20), (1,2,3,5,7,10,11,6)(13,14,15,16)(17,18) );
 
Copy content sage:G = PermutationGroup(['(2,4,6,9)(5,8,10,12)(7,11)(13,14,16,15)(17,19)(18,20)', '(1,2,3,5,7,10,11,6)(13,14,15,16)(17,18)'])
 
Transitive group: 36T33550 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^7$ . $(C_6^3:S_4)$ $A_4^3$ . $(C_2^4:D_{12})$ $C_4$ . $(A_4:S_4^2.S_4)$ $(A_4:S_4^2.A_4)$ . $D_4$ all 26

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 33 normal subgroups (25 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^3.C_2^3:S_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $A_4^3.C_2^3:A_4$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^3.C_2^3:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^8\times C_4$ $G/\operatorname{Fit} \simeq$ $C_3^3:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^3.C_2^4:D_{12}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_2\times C_3^3:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2.C_2^6.C_2^6$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$

Subgroup diagram and profile

Series

Derived series $A_4^3.C_2^4:D_{12}$ $\rhd$ $A_4^3.C_2^3:A_4$ $\rhd$ $C_2^2\times C_2^6.C_3^2.D_6$ $\rhd$ $A_4^3$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^3.C_2^4:D_{12}$ $\rhd$ $A_4^3.C_2^4:C_{12}$ $\rhd$ $A_4^3.C_2^3:A_4$ $\rhd$ $A_4:S_4^2.A_4$ $\rhd$ $C_2^2\times C_2^6.C_3^2.D_6$ $\rhd$ $A_4:S_4^2$ $\rhd$ $A_4^3$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^3.C_2^4:D_{12}$ $\rhd$ $A_4^3.C_2^3:A_4$ $\rhd$ $A_4:S_4^2.A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_4$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $276 \times 276$ character table is not available for this group.

Rational character table

The $234 \times 234$ rational character table is not available for this group.