Properties

Label 663552.ja.48.A
Order $ 2^{9} \cdot 3^{3} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: not computed
Generators: $\langle(3,7,11)(4,8,9)(5,10,6), (4,8)(9,12), (2,10)(4,8)(5,6)(9,12), (8,9,12)(13,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, metabelian (hence solvable), and an A-group. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^3.C_2^4:D_{12}$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^4.C_6.C_2^5$, of order \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ not computed
$W$$A_4^3:S_4$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^3.C_2^4:D_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^3.C_2^3:S_4$