Properties

Label 663552.ii.8.F
Order $ 2^{10} \cdot 3^{4} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4^3:S_4$
Order: \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(3,11,7)(5,12,9)(17,20)(18,19), (3,11,7), (2,10,6,8)(3,7,11)(4,5)(13,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $5$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^9.S_3\wr S_3$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^3.C_2^6:S_4$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_4^3.D_6$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
$W$$A_4^3.(C_2\times S_4)$, of order \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^7.S_3\wr S_3$
Normal closure:$A_4^3.C_2^3:S_4$
Core:$A_4^3.C_2^3$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$S_4^3.S_4$