Properties

Label 663552.ii.48.B
Order $ 2^{9} \cdot 3^{3} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^3.C_2^3$
Order: \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,11,7)(5,12,9)(17,20)(18,19), (3,11,7), (4,9)(5,12), (1,11)(3,7), (2,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^9.S_3\wr S_3$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^3.C_2^6:S_4$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_4^3.S_4$, of order \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
$W$$A_4^3.(C_2\times S_4)$, of order \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^9.S_3\wr S_3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$S_4^3.S_4$