Properties

Label 663552.cp.72.B
Order $ 2^{10} \cdot 3^{2} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: not computed
Generators: $\langle(17,19)(18,20), (10,12,16), (3,4)(11,13), (1,15,5,9)(2,12)(3,13,4,11)(10,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^2.S_4\wr C_2.C_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times C_2^8.C_3^4.D_4.C_2^2$
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$A_4^2.C_2^2.C_2^4.C_2$
Normal closure:$A_4^2.(A_4^2:C_4\times C_2^2)$
Core:$C_2$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2:\POPlus(4,3).C_2^2$