Properties

Label 663552.cp
Order \( 2^{13} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $20$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,4)(2,6)(3,5)(7,12,14,16)(8,10)(9,13,15,11)(17,18,19,20), (1,2,5,10,9,12)(3,7,11,6)(4,8,13,14)(15,16)(17,18,19,20), (1,3)(2,6,10,14,16,8,12,7)(4,9,13,5)(11,15)(17,18,19,20) >;
 
Copy content gap:G := Group( (1,4)(2,6)(3,5)(7,12,14,16)(8,10)(9,13,15,11)(17,18,19,20), (1,2,5,10,9,12)(3,7,11,6)(4,8,13,14)(15,16)(17,18,19,20), (1,3)(2,6,10,14,16,8,12,7)(4,9,13,5)(11,15)(17,18,19,20) );
 
Copy content sage:G = PermutationGroup(['(1,4)(2,6)(3,5)(7,12,14,16)(8,10)(9,13,15,11)(17,18,19,20)', '(1,2,5,10,9,12)(3,7,11,6)(4,8,13,14)(15,16)(17,18,19,20)', '(1,3)(2,6,10,14,16,8,12,7)(4,9,13,5)(11,15)(17,18,19,20)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1014738818773306264237158041199793380190192523855933274624179648373876003851325775501305692811204211229124148380865915403804326643917907460715759048498629393051072344970275949182544300724212689564228928469037700908554681217606352371683983100502604598253339986018212902881677693721061864597310205580149938355478397928804243241343269008278528019170545367871033166564259074652993206405803192497129601028685003164165276657376349271578343067227923115003131525308014950004921972421629220905248182712261351097200271120455280996394868109347173906417794394263704510208093795737161346004260891685503348618234571808813636198168608244583531785452483919088288,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 

Group information

Description:$A_4^2.S_4\wr C_2.C_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^3\times C_2^8.C_3^4.D_4.C_2^2$, of order \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 5983 6560 146592 98912 248832 156672 663552
Conjugacy classes   1 23 8 46 50 22 26 176
Divisions 1 23 8 39 50 13 23 157
Autjugacy classes 1 19 7 28 40 8 12 115

Minimal presentations

Permutation degree:$20$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{3}=e^{6}=f^{6}=g^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 34, 4053906, 24433694, 15695065, 2770356, 13941091, 15307364, 1710781, 190, 41647284, 10928301, 1371938, 826272, 1331717, 25912918, 16420407, 1339520, 463153, 3153030, 33443783, 17089392, 5983853, 14354, 6874, 346, 10967047, 11306520, 340585, 281850, 3339, 15520328, 39084793, 10170258, 11765759, 1501006, 12486, 450, 11560009, 15177626, 4726043, 2131180, 355037, 94182186, 21973275, 4561348, 2676405, 565566, 444407, 24830, 10822, 554, 3851531, 58517020, 507597, 1592078, 1233871, 445548, 11456669, 3437038, 286479, 1432160, 39928, 16077, 5486, 3514, 94248013, 13571742, 925408, 1696545, 385658, 55841, 19444, 10179, 4484, 440654, 661008, 2313425, 9330, 23117, 7834, 966, 19740687, 19633, 68610, 3348964, 1116405, 793286, 186199, 132360, 44249, 15706, 116857744, 82399713, 1623074, 811579, 10300044, 4588265, 1498294, 343467, 255050, 44386, 19260, 21011]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.4, G.6, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(1014738818773306264237158041199793380190192523855933274624179648373876003851325775501305692811204211229124148380865915403804326643917907460715759048498629393051072344970275949182544300724212689564228928469037700908554681217606352371683983100502604598253339986018212902881677693721061864597310205580149938355478397928804243241343269008278528019170545367871033166564259074652993206405803192497129601028685003164165276657376349271578343067227923115003131525308014950004921972421629220905248182712261351097200271120455280996394868109347173906417794394263704510208093795737161346004260891685503348618234571808813636198168608244583531785452483919088288,663552); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1014738818773306264237158041199793380190192523855933274624179648373876003851325775501305692811204211229124148380865915403804326643917907460715759048498629393051072344970275949182544300724212689564228928469037700908554681217606352371683983100502604598253339986018212902881677693721061864597310205580149938355478397928804243241343269008278528019170545367871033166564259074652993206405803192497129601028685003164165276657376349271578343067227923115003131525308014950004921972421629220905248182712261351097200271120455280996394868109347173906417794394263704510208093795737161346004260891685503348618234571808813636198168608244583531785452483919088288,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1014738818773306264237158041199793380190192523855933274624179648373876003851325775501305692811204211229124148380865915403804326643917907460715759048498629393051072344970275949182544300724212689564228928469037700908554681217606352371683983100502604598253339986018212902881677693721061864597310205580149938355478397928804243241343269008278528019170545367871033166564259074652993206405803192497129601028685003164165276657376349271578343067227923115003131525308014950004921972421629220905248182712261351097200271120455280996394868109347173906417794394263704510208093795737161346004260891685503348618234571808813636198168608244583531785452483919088288,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Permutation group:Degree $20$ $\langle(1,4)(2,6)(3,5)(7,12,14,16)(8,10)(9,13,15,11)(17,18,19,20), (1,2,5,10,9,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,4)(2,6)(3,5)(7,12,14,16)(8,10)(9,13,15,11)(17,18,19,20), (1,2,5,10,9,12)(3,7,11,6)(4,8,13,14)(15,16)(17,18,19,20), (1,3)(2,6,10,14,16,8,12,7)(4,9,13,5)(11,15)(17,18,19,20) >;
 
Copy content gap:G := Group( (1,4)(2,6)(3,5)(7,12,14,16)(8,10)(9,13,15,11)(17,18,19,20), (1,2,5,10,9,12)(3,7,11,6)(4,8,13,14)(15,16)(17,18,19,20), (1,3)(2,6,10,14,16,8,12,7)(4,9,13,5)(11,15)(17,18,19,20) );
 
Copy content sage:G = PermutationGroup(['(1,4)(2,6)(3,5)(7,12,14,16)(8,10)(9,13,15,11)(17,18,19,20)', '(1,2,5,10,9,12)(3,7,11,6)(4,8,13,14)(15,16)(17,18,19,20)', '(1,3)(2,6,10,14,16,8,12,7)(4,9,13,5)(11,15)(17,18,19,20)'])
 
Transitive group: 24T20601 24T20609 36T33426 36T33434 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(A_4^2.S_4\wr C_2)$ . $C_4$ $(C_2^9.C_3^4:Q_8)$ . $C_2$ $(C_2^9.C_3^4:D_4)$ . $C_2$ $(C_2^9.C_3^4:D_4)$ . $C_2$ all 24

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 36 normal subgroups (24 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^2:\POPlus(4,3).C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3^4.C_2$ $G/G' \simeq$ $C_2^2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^2:\POPlus(4,3).C_2^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3^4:D_4:C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^2.S_4\wr C_2.C_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3^4:D_4:C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^6.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $A_4^2.S_4\wr C_2.C_4$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^2.S_4\wr C_2.C_4$ $\rhd$ $A_4^2.(A_4^2:C_4\times C_2^2)$ $\rhd$ $C_2\times C_2^8.C_3^3.D_6$ $\rhd$ $C_2\times C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^2.S_4\wr C_2.C_4$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $176 \times 176$ character table is not available for this group.

Rational character table

The $157 \times 157$ rational character table is not available for this group.