Properties

Label 663552.br.16.B
Order $ 2^{9} \cdot 3^{4} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: not computed
Generators: $\langle(3,15)(5,10), (5,10,15)(8,11,12), (1,2)(4,16)(6,14)(7,11)(8,12)(9,13), (2,9,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^2.S_4\wr C_2.C_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ not computed
$W$$A_4^2\wr C_2.D_4$, of order \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^2.S_4\wr C_2.C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2.S_4\wr C_2.C_4$