Properties

Label 663552.br
Order \( 2^{13} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $20$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,4,9,14,13,16,2,6)(3,7)(5,11,15,8)(10,12)(17,19,18,20), (1,2)(3,5,10)(4,6)(7,12,8,11)(9,13)(17,18)(19,20), (1,3,2,5,9,10)(4,8,6,7)(11,14,12,16)(13,15)(17,19,18,20) >;
 
Copy content gap:G := Group( (1,4,9,14,13,16,2,6)(3,7)(5,11,15,8)(10,12)(17,19,18,20), (1,2)(3,5,10)(4,6)(7,12,8,11)(9,13)(17,18)(19,20), (1,3,2,5,9,10)(4,8,6,7)(11,14,12,16)(13,15)(17,19,18,20) );
 
Copy content sage:G = PermutationGroup(['(1,4,9,14,13,16,2,6)(3,7)(5,11,15,8)(10,12)(17,19,18,20)', '(1,2)(3,5,10)(4,6)(7,12,8,11)(9,13)(17,18)(19,20)', '(1,3,2,5,9,10)(4,8,6,7)(11,14,12,16)(13,15)(17,19,18,20)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(152548345903024462838019825486110346081258803828948193936250268995437853236575250794776821567294214124752353775237150442912486589233526037427527574279158508411291854189478564550473502396013846829819250738013723076588205762794313674922971348597711611729488697743220091133492961837636040819745189447699369960991978915285233416039876486889244674345679499398873591800476365410687403249943291571514015088454656722027397662837744366735529005889991860738266327344807015858894336313751369414765465829367535204259930812606928410595805848955328776350898485470619032704758523952827183472455160298479449123637251177906367653499489595122401594985613606685042586305027778496796081955684270806533795175336608,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 

Group information

Description:$A_4^2.S_4\wr C_2.C_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.C_3^4.C_2^5.C_2^3$, of order \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 5983 6560 123552 98912 124416 304128 663552
Conjugacy classes   1 23 10 60 58 8 52 212
Divisions 1 23 10 46 58 6 37 181
Autjugacy classes 1 19 7 32 40 4 18 121

Minimal presentations

Permutation degree:$20$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{3}=e^{6}=f^{6}=g^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 34, 2715122, 11845262, 7454281, 2061252, 28878243, 4081380, 3460829, 190, 2492884, 8122621, 3925338, 9252, 49488773, 14909974, 7455015, 3718568, 1862185, 52992134, 30336455, 17824336, 7151957, 324944, 1086442, 346, 2236935, 17638680, 2317481, 7172154, 4057227, 39912200, 20027113, 2592474, 12462827, 3596800, 1400502, 364556, 83206, 450, 38950409, 34467866, 21012043, 12419580, 465197, 43922570, 54610011, 21551420, 8178693, 3110262, 410764, 94377, 31562, 4090, 554, 21020171, 15510556, 2604717, 8316734, 6785935, 631697, 249826, 83379, 50409228, 1145727, 429704, 23982, 35933, 12082, 2154, 68557, 39481374, 19740719, 925408, 5552145, 925459, 411396, 137237, 77278, 25887, 11624, 55520654, 19828848, 1331165, 3470122, 633536, 427003, 41460, 25412, 23134, 7851, 56480271, 73322528, 36661297, 9586434, 7931603, 1674549, 602342, 259639, 125016, 36089, 25498, 84480496, 53934369, 26967218, 374611, 124966, 561951, 187424, 10573, 3654, 15809]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.4, G.6, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(152548345903024462838019825486110346081258803828948193936250268995437853236575250794776821567294214124752353775237150442912486589233526037427527574279158508411291854189478564550473502396013846829819250738013723076588205762794313674922971348597711611729488697743220091133492961837636040819745189447699369960991978915285233416039876486889244674345679499398873591800476365410687403249943291571514015088454656722027397662837744366735529005889991860738266327344807015858894336313751369414765465829367535204259930812606928410595805848955328776350898485470619032704758523952827183472455160298479449123637251177906367653499489595122401594985613606685042586305027778496796081955684270806533795175336608,663552); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(152548345903024462838019825486110346081258803828948193936250268995437853236575250794776821567294214124752353775237150442912486589233526037427527574279158508411291854189478564550473502396013846829819250738013723076588205762794313674922971348597711611729488697743220091133492961837636040819745189447699369960991978915285233416039876486889244674345679499398873591800476365410687403249943291571514015088454656722027397662837744366735529005889991860738266327344807015858894336313751369414765465829367535204259930812606928410595805848955328776350898485470619032704758523952827183472455160298479449123637251177906367653499489595122401594985613606685042586305027778496796081955684270806533795175336608,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(152548345903024462838019825486110346081258803828948193936250268995437853236575250794776821567294214124752353775237150442912486589233526037427527574279158508411291854189478564550473502396013846829819250738013723076588205762794313674922971348597711611729488697743220091133492961837636040819745189447699369960991978915285233416039876486889244674345679499398873591800476365410687403249943291571514015088454656722027397662837744366735529005889991860738266327344807015858894336313751369414765465829367535204259930812606928410595805848955328776350898485470619032704758523952827183472455160298479449123637251177906367653499489595122401594985613606685042586305027778496796081955684270806533795175336608,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Permutation group:Degree $20$ $\langle(1,4,9,14,13,16,2,6)(3,7)(5,11,15,8)(10,12)(17,19,18,20), (1,2)(3,5,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,4,9,14,13,16,2,6)(3,7)(5,11,15,8)(10,12)(17,19,18,20), (1,2)(3,5,10)(4,6)(7,12,8,11)(9,13)(17,18)(19,20), (1,3,2,5,9,10)(4,8,6,7)(11,14,12,16)(13,15)(17,19,18,20) >;
 
Copy content gap:G := Group( (1,4,9,14,13,16,2,6)(3,7)(5,11,15,8)(10,12)(17,19,18,20), (1,2)(3,5,10)(4,6)(7,12,8,11)(9,13)(17,18)(19,20), (1,3,2,5,9,10)(4,8,6,7)(11,14,12,16)(13,15)(17,19,18,20) );
 
Copy content sage:G = PermutationGroup(['(1,4,9,14,13,16,2,6)(3,7)(5,11,15,8)(10,12)(17,19,18,20)', '(1,2)(3,5,10)(4,6)(7,12,8,11)(9,13)(17,18)(19,20)', '(1,3,2,5,9,10)(4,8,6,7)(11,14,12,16)(13,15)(17,19,18,20)'])
 
Transitive group: 24T20565 24T20567 36T33441 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(A_4^2.S_4\wr C_2)$ . $C_4$ $(C_2^9.C_3:S_3^3)$ . $C_2$ $(C_2^9.C_3:S_3^3)$ . $C_2$ $(C_2.A_4^2\wr C_2)$ . $D_4$ all 27

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 42 normal subgroups (24 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^2\wr C_2.D_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3^4.C_2$ $G/G' \simeq$ $C_2^2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^2\wr C_2.D_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3^4:(C_2\times D_4)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^2.S_4\wr C_2.C_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3^4:(C_2\times D_4)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^6.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $A_4^2.S_4\wr C_2.C_4$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^2.S_4\wr C_2.C_4$ $\rhd$ $C_2^9.C_3^4:D_4$ $\rhd$ $C_2\times C_2^8.C_3^3.D_6$ $\rhd$ $C_2\times C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^4:A_4^2$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^2.S_4\wr C_2.C_4$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $212 \times 212$ character table is not available for this group.

Rational character table

The $181 \times 181$ rational character table is not available for this group.