Properties

Label 6600.x.66.a1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}^2$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{5}c^{33}, a^{2}, b^{2}, b^{5}c^{55}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $C_{66}:C_{10}^2$
Order: \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{165}.C_{60}.C_2^3$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,5)$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{10}^2$
Normalizer:$C_2\times C_{10}^2$
Normal closure:$C_{66}:C_{10}^2$
Core:$C_{10}$
Minimal over-subgroups:$C_{10}\times F_{11}$$D_6\times C_5^2$$C_2\times C_{10}^2$
Maximal under-subgroups:$C_5\times C_{10}$$C_5\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$

Other information

Number of subgroups in this autjugacy class$198$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$-1$
Projective image$C_{66}:C_{10}$