Properties

Label 6600.x.22.a1
Order $ 2^{2} \cdot 3 \cdot 5^{2} $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6\times C_5^2$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{5}c^{33}, a^{2}, b^{2}, b^{5}c^{55}, c^{44}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{66}:C_{10}^2$
Order: \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{165}.C_{60}.C_2^3$
$\operatorname{Aut}(H)$ $D_6\times \GL(2,5)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$S_3\times C_{10}^2$
Normal closure:$C_{66}:C_{10}^2$
Core:$C_{30}$
Minimal over-subgroups:$C_{330}:C_{10}$$S_3\times C_{10}^2$
Maximal under-subgroups:$C_5\times C_{30}$$S_3\times C_5^2$$C_{10}^2$$S_3\times C_{10}$$S_3\times C_{10}$

Other information

Number of subgroups in this autjugacy class$66$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$1$
Projective image$C_{66}:C_{10}$