Properties

Label 6600.x.6.a1
Order $ 2^{2} \cdot 5^{2} \cdot 11 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{110}:C_{10}$
Order: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{2}, b^{2}, c^{33}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{66}:C_{10}^2$
Order: \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{165}.C_{60}.C_2^3$
$\operatorname{Aut}(H)$ $C_{55}.C_{30}.C_2^3$
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_{30}$
Normalizer:$C_{66}:C_{10}^2$
Complements:$S_3$
Minimal over-subgroups:$C_{110}:C_{30}$$C_{22}:C_{10}^2$
Maximal under-subgroups:$C_{110}:C_5$$C_2\times C_{110}$$C_{22}:C_{10}$$C_{10}^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$3$
Projective image$C_{33}:C_{10}$