Properties

Label 6600.x.30.b1
Order $ 2^{2} \cdot 5 \cdot 11 $
Index $ 2 \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}:C_{10}$
Order: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{2}b^{6}, c^{6}, c^{33}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{66}:C_{10}^2$
Order: \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_5\times S_3$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{165}.C_{60}.C_2^3$
$\operatorname{Aut}(H)$ $S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_{30}$
Normalizer:$C_{66}:C_{10}^2$
Complements:$C_5\times S_3$ $C_5\times S_3$
Minimal over-subgroups:$C_{110}:C_{10}$$C_{22}:C_{30}$$C_2^2\times F_{11}$
Maximal under-subgroups:$C_{11}:C_{10}$$C_2\times C_{22}$$C_2\times C_{10}$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$5$
Möbius function$-3$
Projective image$C_{165}:C_{10}$