Properties

Label 656.53.82.a1
Order $ 2^{3} $
Index $ 2 \cdot 41 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(82\)\(\medspace = 2 \cdot 41 \)
Exponent: \(2\)
Generators: $b, c, d^{41}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^3\times C_{82}$
Order: \(656\)\(\medspace = 2^{4} \cdot 41 \)
Exponent: \(82\)\(\medspace = 2 \cdot 41 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_{82}$
Order: \(82\)\(\medspace = 2 \cdot 41 \)
Exponent: \(82\)\(\medspace = 2 \cdot 41 \)
Automorphism Group: $C_{40}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_{40}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,41$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{40}\times A_8$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(320\)\(\medspace = 2^{6} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_{82}$
Normalizer:$C_2^3\times C_{82}$
Complements:$C_{82}$
Minimal over-subgroups:$C_2^2\times C_{82}$$C_2^4$
Maximal under-subgroups:$C_2^2$

Other information

Number of subgroups in this autjugacy class$15$
Number of conjugacy classes in this autjugacy class$15$
Möbius function$1$
Projective image$C_{82}$