Properties

Label 656.53.164.a1
Order $ 2^{2} $
Index $ 2^{2} \cdot 41 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(164\)\(\medspace = 2^{2} \cdot 41 \)
Exponent: \(2\)
Generators: $b, d^{41}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_2^3\times C_{82}$
Order: \(656\)\(\medspace = 2^{4} \cdot 41 \)
Exponent: \(82\)\(\medspace = 2 \cdot 41 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2\times C_{82}$
Order: \(164\)\(\medspace = 2^{2} \cdot 41 \)
Exponent: \(82\)\(\medspace = 2 \cdot 41 \)
Automorphism Group: $S_3\times C_{40}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Outer Automorphisms: $S_3\times C_{40}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{40}\times A_8$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_{82}$
Normalizer:$C_2^3\times C_{82}$
Complements:$C_2\times C_{82}$
Minimal over-subgroups:$C_2\times C_{82}$$C_2^3$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$35$
Number of conjugacy classes in this autjugacy class$35$
Möbius function$-2$
Projective image$C_2\times C_{82}$