Properties

Label 6531840.b.8505.b1.a1
Order $ 2^{8} \cdot 3 $
Index $ 3^{5} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_4^2):S_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(8505\)\(\medspace = 3^{5} \cdot 5 \cdot 7 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left[ \left(\begin{array}{rrrrrr} 1 & 2 & 0 & 1 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 2 & 2 & 1 & 1 & 2 \\ 0 & 2 & 2 & 1 & 1 & 0 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 2 & 2 & 1 & 2 & 0 \\ 0 & 2 & 0 & 0 & 2 & 0 \\ 2 & 1 & 0 & 1 & 2 & 0 \\ 2 & 2 & 0 & 0 & 1 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 2 & 1 & 1 & 2 & 0 \\ 2 & 1 & 1 & 0 & 0 & 2 \\ 2 & 0 & 0 & 1 & 2 & 2 \\ 2 & 2 & 0 & 2 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 & 2 \\ 0 & 1 & 2 & 0 & 1 & 0 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 2 & 0 \\ 2 & 2 & 1 & 1 & 0 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 2 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 0 & 0 & 1 \\ 1 & 2 & 0 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 & 1 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 2 & 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 0 & 2 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 2 & 1 & 2 & 2 \\ 2 & 2 & 2 & 1 & 2 & 2 \\ 2 & 2 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & 2 & 2 & 0 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 1 & 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 2 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 & 2 & 1 \\ 2 & 0 & 2 & 2 & 2 & 2 \\ 2 & 1 & 0 & 1 & 1 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 2 & 0 & 2 & 2 \\ 1 & 2 & 2 & 1 & 0 & 2 \\ 2 & 0 & 1 & 2 & 1 & 2 \\ 2 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 & 1 & 2 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $\PSOMinus(6,3)$
Order: \(6531840\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 5 \cdot 7 \)
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(4,3)$, of order \(26127360\)\(\medspace = 2^{10} \cdot 3^{6} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_4^2.(D_4\times S_4).C_2$
$W$$(C_2\times C_4^2):S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$(C_2\times C_4^2):S_4$
Normal closure:$\PSOMinus(6,3)$
Core:$C_1$
Minimal over-subgroups:$C_2^4.S_6$$C_2^4.S_6$
Maximal under-subgroups:$(C_2\times C_4^2):A_4$$C_4^2:S_4$$C_4^2:S_4$$D_4^2:C_2^2$$C_4^2:D_6$$C_2^3:S_4$$C_2^3:S_4$

Other information

Number of subgroups in this conjugacy class$8505$
Möbius function not computed
Projective image$\PSOMinus(6,3)$