Properties

Label 6530347008.biv.8._.CN
Order $ 2^{9} \cdot 3^{13} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6.(C_3^6.C_2^6:S_4)$
Order: \(816293376\)\(\medspace = 2^{9} \cdot 3^{13} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,10,3,12,2,11)(4,6,5)(7,18,9,17,8,16)(13,15,14)(19,29,21,28,20,30)(22,23,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^{12}.C_2^6.D_6.(C_2\times D_4)$
Order: \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(26121388032\)\(\medspace = 2^{14} \cdot 3^{13} \)
$\operatorname{Aut}(H)$ Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed