Properties

Label 816293376.bcu
Order \( 2^{9} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,10,7,19,2,12,8,21,3,11,9,20)(4,16,35,14)(5,17,36,15)(6,18,34,13)(22,29,27,31)(23,28,25,32)(24,30,26,33), (1,20,25,34,16,23,3,19,26,35,18,22,2,21,27,36,17,24)(4,11,30,7,14,32,6,10,28,8,13,33,5,12,29,9,15,31), (1,18,33,34,19,28)(2,16,31,36,20,29)(3,17,32,35,21,30)(4,14,24,8,10,26,5,13,23,9,11,25,6,15,22,7,12,27) >;
 
Copy content gap:G := Group( (1,10,7,19,2,12,8,21,3,11,9,20)(4,16,35,14)(5,17,36,15)(6,18,34,13)(22,29,27,31)(23,28,25,32)(24,30,26,33), (1,20,25,34,16,23,3,19,26,35,18,22,2,21,27,36,17,24)(4,11,30,7,14,32,6,10,28,8,13,33,5,12,29,9,15,31), (1,18,33,34,19,28)(2,16,31,36,20,29)(3,17,32,35,21,30)(4,14,24,8,10,26,5,13,23,9,11,25,6,15,22,7,12,27) );
 
Copy content sage:G = PermutationGroup(['(1,10,7,19,2,12,8,21,3,11,9,20)(4,16,35,14)(5,17,36,15)(6,18,34,13)(22,29,27,31)(23,28,25,32)(24,30,26,33)', '(1,20,25,34,16,23,3,19,26,35,18,22,2,21,27,36,17,24)(4,11,30,7,14,32,6,10,28,8,13,33,5,12,29,9,15,31)', '(1,18,33,34,19,28)(2,16,31,36,20,29)(3,17,32,35,21,30)(4,14,24,8,10,26,5,13,23,9,11,25,6,15,22,7,12,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(559613374093520202481536149803242766770337730939888215499385251188304316732499914419183171969315319246027850747239763605973335130937143098852607178565812924798644205931396365766428891073432417425740270077657787731598988257328137838479569292727348457062077320305683484106230269701853074915525728166574531591056334406772336835132118077540501620967996709082466767177592540064070512961331812178449312896971711803162255693393015140137035453098468007435794574409843007852806515719121849785256942457106186479108400534949297521804416754071913284097484884785593583363223296279780789076595466561107271281608840155996424464395877164625848102185392459904337658726383525093469328390803552727882200033653868814331202201006312546420938817810619085921921321482697000662835418735172955421133784667884222931460333519176563769332559927789286795801190943917614772897067811569597970371409278348663141594454785056823938088377330281844988757174529246238881578266004767517876543311294609604933792921503837371033012199535214005683790020036202953454813305530369912104284353106386125484732710748399337776271575083337989591685555275027909514157771136861988497399280918573547595785795026330714548540639056717510085115859824995354493866058045346529332901826017504156653146196592023027235333970190146993135182622082541913804491260085708616798302058330926234409233785863610584994828358719113546138758555352492413090258515612639951213121719872153249437826059532643853334964146529959750605431865571653951940485894551884408534851337998509704288138996258661459975593268872737404245503,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 

Group information

Description:$C_3^6.(C_3^6.C_2^6:S_4)$
Order: \(816293376\)\(\medspace = 2^{9} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 625023 1371248 20995200 157567248 67184640 387151488 181398528 816293376
Conjugacy classes   1 29 714 26 2014 26 278 15 3103
Divisions 1 29 574 26 1810 23 216 15 2694
Autjugacy classes 1 22 334 14 1078 11 114 6 1580

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid d^{4}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 17427663528, 33442232649, 111, 35962266122, 11340065134, 2113059, 7915769689, 16854466775, 1683096517, 57639075124, 22066067126, 7081721508, 7291237210, 312, 92961316805, 43092637659, 10938487873, 6626267543, 81116490846, 53959856440, 18750950576, 3988167640, 3814448270, 899090616, 446, 1138689031, 47087631389, 19746541107, 5705, 3469611999, 113137141, 137999220488, 52445352990, 24570415636, 9005467754, 4739155440, 3231419518, 574038176, 40330980, 580, 113613603849, 72559132831, 39784947893, 5644003275, 2819720737, 2029938359, 1405171821, 37119860194, 27481221404, 8271089364, 13116856972, 5450468330, 6917448, 1780741654, 635893400, 116934102, 128807854, 714, 207344738315, 85984943649, 20318487607, 304205, 4870762083, 45429241, 17715599, 3785947, 19903238796, 222640738, 2425696472, 911813838, 798393124, 2100506, 16864992, 56370766, 1843172, 1024662, 190708, 848, 2184247309, 1187924003, 546061881, 162860623, 105380453, 532347, 26345233, 44541, 732041, 27371534, 1046960676, 5573525818, 195022160, 97511142, 1710844, 23994, 4238, 11065393167, 401448997, 5645832251, 21897297, 49268839, 25546877, 137313939, 4257983, 6602347, 12951, 3117616144, 6429113894, 697973820, 10340434, 3231464, 17449470, 16156948, 6058992, 772172, 94528, 15700303889, 459841575, 6080583229, 32845907, 57480297, 4105855, 125224853, 684481, 6957165, 128585, 317536957074, 47422628392, 49396966142, 7676894452, 1740277898, 6444516800, 2587839822, 30126290, 71056894, 895638, 1259089939, 45619241, 999060543, 2481684565, 1243123307, 342144129, 16537111, 49325955, 871439, 1283323, 104691742868, 144949166250, 12478169152, 3457341974, 10060013148, 6318496930, 1753157096, 100357684, 66955128, 2852672, 247018328853, 17614223659, 26425703105, 22124855895, 11086844845, 1070530691, 1558751193, 283872005, 86086417, 7934013]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(559613374093520202481536149803242766770337730939888215499385251188304316732499914419183171969315319246027850747239763605973335130937143098852607178565812924798644205931396365766428891073432417425740270077657787731598988257328137838479569292727348457062077320305683484106230269701853074915525728166574531591056334406772336835132118077540501620967996709082466767177592540064070512961331812178449312896971711803162255693393015140137035453098468007435794574409843007852806515719121849785256942457106186479108400534949297521804416754071913284097484884785593583363223296279780789076595466561107271281608840155996424464395877164625848102185392459904337658726383525093469328390803552727882200033653868814331202201006312546420938817810619085921921321482697000662835418735172955421133784667884222931460333519176563769332559927789286795801190943917614772897067811569597970371409278348663141594454785056823938088377330281844988757174529246238881578266004767517876543311294609604933792921503837371033012199535214005683790020036202953454813305530369912104284353106386125484732710748399337776271575083337989591685555275027909514157771136861988497399280918573547595785795026330714548540639056717510085115859824995354493866058045346529332901826017504156653146196592023027235333970190146993135182622082541913804491260085708616798302058330926234409233785863610584994828358719113546138758555352492413090258515612639951213121719872153249437826059532643853334964146529959750605431865571653951940485894551884408534851337998509704288138996258661459975593268872737404245503,816293376); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21; p := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(559613374093520202481536149803242766770337730939888215499385251188304316732499914419183171969315319246027850747239763605973335130937143098852607178565812924798644205931396365766428891073432417425740270077657787731598988257328137838479569292727348457062077320305683484106230269701853074915525728166574531591056334406772336835132118077540501620967996709082466767177592540064070512961331812178449312896971711803162255693393015140137035453098468007435794574409843007852806515719121849785256942457106186479108400534949297521804416754071913284097484884785593583363223296279780789076595466561107271281608840155996424464395877164625848102185392459904337658726383525093469328390803552727882200033653868814331202201006312546420938817810619085921921321482697000662835418735172955421133784667884222931460333519176563769332559927789286795801190943917614772897067811569597970371409278348663141594454785056823938088377330281844988757174529246238881578266004767517876543311294609604933792921503837371033012199535214005683790020036202953454813305530369912104284353106386125484732710748399337776271575083337989591685555275027909514157771136861988497399280918573547595785795026330714548540639056717510085115859824995354493866058045346529332901826017504156653146196592023027235333970190146993135182622082541913804491260085708616798302058330926234409233785863610584994828358719113546138758555352492413090258515612639951213121719872153249437826059532643853334964146529959750605431865571653951940485894551884408534851337998509704288138996258661459975593268872737404245503,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(559613374093520202481536149803242766770337730939888215499385251188304316732499914419183171969315319246027850747239763605973335130937143098852607178565812924798644205931396365766428891073432417425740270077657787731598988257328137838479569292727348457062077320305683484106230269701853074915525728166574531591056334406772336835132118077540501620967996709082466767177592540064070512961331812178449312896971711803162255693393015140137035453098468007435794574409843007852806515719121849785256942457106186479108400534949297521804416754071913284097484884785593583363223296279780789076595466561107271281608840155996424464395877164625848102185392459904337658726383525093469328390803552727882200033653868814331202201006312546420938817810619085921921321482697000662835418735172955421133784667884222931460333519176563769332559927789286795801190943917614772897067811569597970371409278348663141594454785056823938088377330281844988757174529246238881578266004767517876543311294609604933792921503837371033012199535214005683790020036202953454813305530369912104284353106386125484732710748399337776271575083337989591685555275027909514157771136861988497399280918573547595785795026330714548540639056717510085115859824995354493866058045346529332901826017504156653146196592023027235333970190146993135182622082541913804491260085708616798302058330926234409233785863610584994828358719113546138758555352492413090258515612639951213121719872153249437826059532643853334964146529959750605431865571653951940485894551884408534851337998509704288138996258661459975593268872737404245503,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 
Permutation group:Degree $36$ $\langle(1,10,7,19,2,12,8,21,3,11,9,20)(4,16,35,14)(5,17,36,15)(6,18,34,13)(22,29,27,31) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,10,7,19,2,12,8,21,3,11,9,20)(4,16,35,14)(5,17,36,15)(6,18,34,13)(22,29,27,31)(23,28,25,32)(24,30,26,33), (1,20,25,34,16,23,3,19,26,35,18,22,2,21,27,36,17,24)(4,11,30,7,14,32,6,10,28,8,13,33,5,12,29,9,15,31), (1,18,33,34,19,28)(2,16,31,36,20,29)(3,17,32,35,21,30)(4,14,24,8,10,26,5,13,23,9,11,25,6,15,22,7,12,27) >;
 
Copy content gap:G := Group( (1,10,7,19,2,12,8,21,3,11,9,20)(4,16,35,14)(5,17,36,15)(6,18,34,13)(22,29,27,31)(23,28,25,32)(24,30,26,33), (1,20,25,34,16,23,3,19,26,35,18,22,2,21,27,36,17,24)(4,11,30,7,14,32,6,10,28,8,13,33,5,12,29,9,15,31), (1,18,33,34,19,28)(2,16,31,36,20,29)(3,17,32,35,21,30)(4,14,24,8,10,26,5,13,23,9,11,25,6,15,22,7,12,27) );
 
Copy content sage:G = PermutationGroup(['(1,10,7,19,2,12,8,21,3,11,9,20)(4,16,35,14)(5,17,36,15)(6,18,34,13)(22,29,27,31)(23,28,25,32)(24,30,26,33)', '(1,20,25,34,16,23,3,19,26,35,18,22,2,21,27,36,17,24)(4,11,30,7,14,32,6,10,28,8,13,33,5,12,29,9,15,31)', '(1,18,33,34,19,28)(2,16,31,36,20,29)(3,17,32,35,21,30)(4,14,24,8,10,26,5,13,23,9,11,25,6,15,22,7,12,27)'])
 
Transitive group: 36T91921 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^6:S_4)$ $(C_3^{12}.C_2^6.D_6)$ . $C_2$ (2) $(C_3^{12}.C_2^6.D_6)$ . $C_2$ (2) $(C_3^{12}.C_2^6.D_6)$ . $C_2$ all 29

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 54 normal subgroups (30 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3103 \times 3103$ character table is not available for this group.

Rational character table

The $2694 \times 2694$ rational character table is not available for this group.