Properties

Label 64880640.c.15840._.B
Order $ 2^{12} $
Index $ 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}$
Order: \(4096\)\(\medspace = 2^{12} \)
Index: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(2\)
Generators: $\langle(12,15)(19,22)(23,24), (3,4)(7,9), (1,5)(2,10)(3,4)(6,8)(11,14)(19,22)(23,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor, a semidirect factor, or almost simple has not been computed.

Ambient group ($G$) information

Description: $D_4\times C_2^{10}.M_{11}$
Order: \(64880640\)\(\medspace = 2^{17} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times M_{11}$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.C_2^2.M_{11}$
$\operatorname{Aut}(H)$ Group of order \(644\!\cdots\!000\)\(\medspace = 2^{66} \cdot 3^{8} \cdot 5^{3} \cdot 7^{4} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 31^{2} \cdot 73 \cdot 89 \cdot 127 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed