Properties

Label 648.717.6.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_3^2$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 2 & 2 & 2 & 0 \\ 2 & 2 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 2 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_3^4:(C_2\times C_4)$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SOPlus(4,2)^2.D_4$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{res}(S)$$F_9:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3:S_3^2$
Normal closure:$C_3^2:S_3^2$
Core:$C_3:S_3$
Minimal over-subgroups:$C_3^2:S_3^2$
Maximal under-subgroups:$S_3\times C_3^2$$C_3^2:C_6$$C_3^2:S_3$$S_3^2$$C_6:S_3$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3^4:(C_2\times C_4)$