Subgroup ($H$) information
Description: | $C_3:S_3^2$ |
Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 2 & 2 & 0 \\
2 & 2 & 1 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 2 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 2 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
Description: | $C_3^4:(C_2\times C_4)$ |
Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\SOPlus(4,2)^2.D_4$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
$\operatorname{res}(S)$ | $F_9:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $24$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_3^4:(C_2\times C_4)$ |