Subgroup ($H$) information
Description: | $\He_3$ |
Order: | \(27\)\(\medspace = 3^{3} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(3\) |
Generators: |
$a^{2}c^{2}d^{2}, b$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_3^3:S_4$ |
Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
$\operatorname{res}(S)$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
$W$ | $C_3^2$, of order \(9\)\(\medspace = 3^{2} \) |
Related subgroups
Centralizer: | $C_3^2$ | ||
Normalizer: | $C_3\times \He_3$ | ||
Normal closure: | $C_3^3:A_4$ | ||
Core: | $C_3$ | ||
Minimal over-subgroups: | $C_3^2:A_4$ | $C_3\times \He_3$ | |
Maximal under-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ |
Other information
Number of subgroups in this autjugacy class | $24$ |
Number of conjugacy classes in this autjugacy class | $3$ |
Möbius function | $0$ |
Projective image | $C_3^2:S_4$ |